当前位置 :
如何用数学归纳法证明代数数可数给一点提示也好啊
4人问答
更新时间:2022-11-29 08:55:29
问题描述:

如何用数学归纳法证明代数数可数

给一点提示也好啊

陈李回答:
  代数数包括有理数和无理数。无理数可数吗?
曹益平回答:
  代数数与无理数不是同一个概念,两者有交集,代数数中有无理数,但也存在无理数不在代数数中,比如π和e。证明写起来很啰嗦,随便找一本数论的书,里面有详细介绍。
马建州回答:
  代数数可定义为系数为有理数的多项式的根(不是有理根的那些无理数)。可化为系数是整数的多项式的根。由此可得到这样的两次多项式有可数个,因而是二次多项式的根的代数数也是可数多个。继而整数系数的三次多项式也是可数多个,是三次多项式根的代数数也是可数多个。这样推论可得是n次多项式根的代数数也是可数多个。多项式次数是可数多个。由于可数多个集合的的并也是可数集从而推出所有代数数是可数多个。证毕!
郭海冰回答:
  证明有理多项式可数,每个多项式的根是有限的,所以代数数可数——可以对n次有理多项式归纳,得出有理多项式可数。
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
问答网(wenda2.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:联系方式:

Copyright©2009-2021 问答网 wenda2.com 版权所有 闽ICP备2022000227号-1