当前位置 :
F1F2是双曲线x2/3-y2=1的左右焦点,M是它上任意点,过F1作角F1MF2的平分线垂线,垂足P,点P轨迹方程为高二数学求点的轨迹方程
1人问答
更新时间:2024-04-22 15:18:09
问题描述:

F1F2是双曲线x2/3-y2=1的左右焦点,M是它上任意点,过F1作角F1MF2的平分线垂线,垂足P,点P轨迹方程为

高二数学求点的轨迹方程

刘斌武回答:
  延长F1P,交MF2或其延长线于点N,根据三线合一,推出三角形MF1N是等腰三角形,|MN|=|MF1|,而|NF2|=||MF2|-|MN||=|MF2|-|MF2||=2a=2√3   所以点N的轨迹为以F2(1,0)为圆心,半径为2√3的圆:(Xn-1)²+Yn²=12   设点P坐标为(x,y),由于点P是F1N的中点,所以x=(Xn-1)/2,y=Yn/2   将点N坐标Xn=2x+1,Yn=2y代入N的轨迹方程,得到点P的轨迹方程:   x²+y²=3
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
问答网(wenda2.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:联系方式:

Copyright©2009-2021 问答网 wenda2.com 版权所有 闽ICP备2022000227号-1